There are fascinating tales of mystery, intrigue, competition and greed behind the evolution of chemistry, and the history of the periodic table is really about that. It is about how magic evolved into science, and yet the elements themselves are interesting in their own right. They are puzzles and their relationships to one another offer clues into the deepest nature of the atom itself. We will explore this in detail in this series. We may be surprised to find that the periodic table we all had to learn may be about to change.
Here is Wikipedia's classic periodic table of elements:
DePiep;Wikipedia |
The following 11-minute video is a nicely done introduction to the history of the periodic table created by CrashCourse.
It Begins with Gold and Black Magic
The first known elements were those that that stood out visually and were accessible. Ancient people found ingots of gold where they lay scattered about on the soil or just beneath. Gold, along with copper, was collected, melted down and shaped into decorative objects as early as about 6000 BC. It wasn't until about 330 BC, however, that people such as Aristotle looked at these pure materials and began to wonder if these and other less visually distinct materials ultimately come from some basic "prima materia" or first matter. At around this time, Plato, thinking along the same lines, suggested there are four basic building blocks of all matter - earth, water, air and fire - and he named them "stoicheia," the Greek word for elements. For many centuries afterward, no one knew how these elements formed all the different materials on Earth, but it was thought that everything stemmed from a single mysterious formless source variously named chaos, quintessence or the aether.
Ingots of gold are beautiful in their own right and it's not surprising that people were not only curious about how these quite rare materials formed but also how they could get more of them. In the meantime, between 6000 BC and 750 BC, a variety of other useful metals were discovered. In order of discovery they were silver, lead, iron, tin and mercury. The craft of smelting - getting the metal to melt and separate from its ore - improved over time and made many of these discoveries possible. While gold, copper and silver can be found in their native form, other metals like lead, tin and iron (except for pure iron found in meteors) are not. Metals, hard and malleable, were a huge boon for ancient people. Metal tools and weapons were vastly superior to those made of wood, rocks or bone. Unknown to them, these metals were the first elements to be identified, extracted and purified.
At around 300 CE, or possibly even before this, what would become the legend of the philosopher's stone took shape. People thought that some alchemical substance with magical properties could turn more common base metals such as lead and iron into more rare and highly valuable gold or silver, and thus began the alchemical race for the philosopher's stone. This might seem stupid to us living in the quantum age, but back then, without scientific knowledge to rest on, it would have been only logical to conjure up magical origins for phenomena we don't understand. There was a significant magical component to very early medicine as well. And, if you look around you, you will come across many vestiges of magical thinking today. Consider superstitions.
This stone was not only considered to be a physical material but a symbol of perfection and an elixir of life and immortality as well. Prima materia was thought to be a starting ingredient in a recipe for the philosopher's stone. The quest to find that recipe went on for many centuries.
Along the way, scientific progress was made, if by sheer trial and error. An alchemist in the 8th century, Jabir ibn Hayyan, surmised that every metal must be made of a combination of four principles. Elaborating on the four original elements, these principles were hot/dry, cold/dry, hot/wet and cold/wet. By rearranging these principles and applying some kind of elixir (the philosopher's stone), he thought he could transmute one metal into another metal. Although gold is generally found in its native pure form as nuggets, he thought that yet more gold resided hidden within different principle mixtures (we call them alloys and ores today) and it was just a matter of treating those mixtures with an elixir to release them. Smelting (roasting the ore or mineral over fire to release molten metals such as copper, lead, silver, tin, iron and mercury) was known since 6000 BC, but chemical metallurgy was not. By the 14th century, one such chemical treatment, called aqua regia (royal water), was discovered. Not the pretty solution you might expect an elixir to be, it was a fuming highly corrosive orange/yellow mixture of powerful acids that can dissolve certain metals such as gold from minerals and alloys so they can be recovered in pure form. This was the first chemical extraction of an element, as opposed to the physical (heat) extraction method called smelting.
Henning Brand - From Pee to Phosphorus, or, From Alchemy to Chemistry
Still, as of 1649, alchemists remained on the hunt for the elusive philosopher's stone, a substance that could do one better than extract a substance - it could create it anew. A German merchant called Henning Brand, trying to find the stone, ran experiments on distilled human urine, and discovered not gold but a white substance that glowed pale green in the dark, which he named phosphorus, the name owing itself to the Greek word for "light bearer."
Of all substances, why urine? At the time philosophers believed that man's body is a microcosm of the universe, so bodily fluids should contain, like the world itself, gold among all other materials. It is reported that he eventually came across a recipe in a then fairly recent tome called "400 Auserlensene Chemische Process" that called for using a mixture of alum, salt peter and concentrated urine to turn base metals into silver (it didn't work). So, I imagine that book's promise placed gold in the realm of possibility too. I can't help but chuckle here. Men.
This discovery would have been awesomely horrific: imagine a giant cauldron, with a fire roaring underneath it, boiling with pee. Eventually the urine concentrates into syrup. A glowing liquid trickles out the bottom spigot - itself entirely aflame.
The chemistry of the process is this:
Urine is rich in potassium salts. Evaporating it produces, among other salts, ammonium sodium hydrogen phosphate, or (NH4)NaHPO4. Heating the evaporate decomposes it into sodium phosphite, ammonia and water:
(NH4)NaHPO4 → NaPO3 + NH3 + H2O
Heating sodium phosphite with charcoal decomposes it into carbon monoxide and white phosphorus (not an especially riskfree reaction):
8NaPO3 + 10C → 2Na4P2O7 + 10CO + P4 (white phosphorus)
This experiment (as well as Boyle's famous phosphorus experiment to follow) is recreated in the first episode of the BBC series Chemistry: A Volatile History (a link to watch it can be found at the end of this article).
Though not precious gold, I am sure he reveled in his man-made product, aglow with some kind of mysterious life force! Below is a sample of white phosphorus (as a solid) under water.
BXXXD; de.wikipedia |
Brand's journey was captured in the famous 1771 painting "The Alchemist in Search of the Philosopher's Stone," shown below.
This painting romanticizes the actual process that was described in 1730 as requiring 50-60 pails of urine that was both putrid and "bred worms" (chuckling again).
Joking aside, this was the first element to be chemically discovered and its discovery was the catalyst (sorry) that ushered in the age of modern chemistry as we know it. There was a lot of fascination around this new product and Brand sold his secret recipe to anyone willing to meet his price. At the time, alchemy was a shadowy secretive world, filled with arcane symbols and recipes and procedures that were rarely shared. The RSC Periodic table has an alchemical version where you can see the (very beautiful) alchemical symbols for various elements that were known at the time. They are quite fascinating. For example, the symbol for iron (right) is also the symbol for Mars and for masculinity.
An ironically fun fact here: phosphates (salts of phosphorus) are one of three essential nutrients (nitrogen, potassium and phosphorus) for plants. There are some movements underway around the world to once again harness the phosphates in urine to use in fertilizer, as geological supplies of phosphate rock dwindle.
Phosphorus, later rediscovered by Robert Boyle, led many others to wonder what exactly an element is. In 1661, Boyle opened up current alchemical knowledge to the world by publishing a book called The Sceptical Chymist in plain English. He defined an element as "any substance that can't be broken down into a simpler substance by a chemical reaction," a good working definition that serves well even after the discovery of subatomic particles (particularly electrons) in the late 19th century with the work of J.J. Thompson and others.
The transition from the Middle Ages to the Age of Enlightenment marked the gradual transition from alchemy to chemistry, as notions of transmutations and the philosopher's stone gave way to the hunt for new "simple substances."
Antoine-Laurent de Lavoisier - the Father of Modern Chemistry
Antoine-Laurent de Lavoisier was the first person to categorize a list of all then known "simple substances." He placed it in a book called Traité Elémentaire de Chimie (Elementary Treatise of Chemistry). It's quite the volume, over 500 pages. You can see a translation of it online created by Project Gutenberg. He brought the concepts of balancing equations and the conservation of mass to chemistry. The law of conservation of mass is the rationale behind balancing a chemical equation. This is his formulation of the law translated into English:
'We may lay it down as an incontestible axiom, that, in all the operations of art and nature, nothing is created; an equal quantity of matter exists both before and after the experiment; the quality and quantity of the elements remain precisely the same; and nothing takes place beyond changes and modifications in the combination of these elements.'
He also explained combustion in terms of combination with oxygen, a breakthrough over an earlier theory in which combustible substances were filled with a fire-like liquid called phlogiston that was released when the substance burned. Below is an elegant portrait of him and his wife (who was also a chemist) painted in 1788.
This was the first chemistry book ever written and it included elements such as oxygen, nitrogen, hydrogen, phosphorus, mercury, zinc and sulphur, among others. When Lavoisier's chemistry book was published (1789), over 20 elements were known. They also included light and "caloric," which were thought at the time to be basic material substances too. Light is, well, light and caloric is what they thought heat was made of - a liquid that flowed from hot objects toward cold objects. This book's chemical classifications were simple but classic: metals and nonmetals.
During the next century many more elements were discovered - 56 by the year 1850. The RSC period table has a history version where you can simply plug in any date from 1 CE to 2014 and all elements known at that date are highlighted. You can click on each element to read a short story about its discovery. Wikipedia has a good timeline of element discoveries as well.
In the 1800's, people were beginning to wonder how this wide variety of substances related to one another. There was a human need to get a handle on them by comparing their physical and chemical properties and categorizing them. In 1817, Johan Wolfgang Dobereiner noticed that there were trends in the properties of elements, so he came up with a way to classify them accordingly. He organized the elements into groups of three so that each element in a group shared related known properties.
John Dalton - the Atom Within the Element
Just a few years prior to Dobereiner's work, John Dalton and others achieved a huge breakthrough that would be tremendously helpful in categorizing these substances. Dalton figured out that substances are made of atoms. This first atomic model was Dalton's model. It was pretty simple - an atom was just a small indivisible object. You can think of it as a tiny solid sphere. Dalton, a physicist (shown right), revolutionized chemistry in 1802 with a series of papers on his atomic theory.
Based on his work with gases, he realized that each pure element is made up of identical atoms, and that atoms of different elements combined with each other in fixed ratios, a revolutionary idea. He also discovered that atoms could be told apart from each other by their unique relative atomic weights. Below is a scan of the first page of his "A New System of Chemical Philosophy" published in1808.
Its quality isn't great but you can see at the bottom of the diagram how much work he did figuring out how atoms combined with each other to make various compounds. The names of many of Dalton's atoms reveal a work in progress. For example, elements 8, 9 and 10 are called lime (which is actually a group containing many calcium-containing compounds), soda (there are actually many sodium salts) and potash (there are many potassium salts). We now know that number 37 is not a 'septemary' element composed of atoms of sugar, with each atom composed of 1 atom alcohol (33 left) and 1 atom carbonic acid (28 left). We know that sugar is a compound, composed of carbon, hydrogen and oxygen atoms. But Dalton based his results on what he knew from experimentation - that sugar ferments into two products - acid and alcohol. He knew that water (21) is made of oxygen (4) and hydrogen (1), except that he thought the ratio was 1 oxygen to 1 hydrogen because at the time no one knew hydrogen was a diatomic gas, and he also thought of water as binary atom, rather than a compound.
Wolfgang Dobereiner was the first person to try to classify the elements based on Dalton's work. He grouped them into clusters of three, arranging them in increasing relative atomic mass so that the mass of the middle element was close to the mean of the outer two elements. The next article in this series, History of the Periodic Table Part 2, explores in detail how the concept of atomic mass was developed and how its measurement was, and continues to be, refined.
Examples of Dobereiner's Triads (numbers are relative atomic masses) are shown below:
An example of one of his triads - lithium, sodium and potassium - is shown below left.
These three elements have a lot in common. They are all a silvery colour. You can squash them with a knife. They float on water. They melt very easily. And, they are all highly reactive. They have to be stored under oil but even under oil they gradually corrode, reacting with traces of oxygen that eventually seep through the oil. Now we group these elements as alkali metals.
This particular grouping works but in general the triad concept wasn't very successful. Many similar elements (judged by appearance and reactions) such as the transition metals (nickel, copper, chromium, zinc, platinum, etc.) can't be arranged in triads, while chemically dissimilar elements can be placed in triads. However, the triad arrangement did provide a clue about the relationship between element appearance/behaviour and atomic mass.
Several more attempts were made to categorize the elements, with none having much more success than the triad table. In 1865, John Newlands devised a 'law of octaves' for the elements (56 of them known by then). He noticed that many pairs of similar elements existed but they differed by a multiple of eight in their mass number, so he organized the elements into eight rows and gave each element an atomic number. A scan of his original list is shown below.
(credits for element photos respectively: Tomihahndorf;Wikipedia, Dnn87;en.wikipedia, http://images-of-elements.com/potassium.php;wikipedia)
For example, lithium (Li, atomic number, Z=3) and sodium (Na, Z=11) (his atomic numbers are a bit off) have similar properties as we just saw. Both are soft and can be cut with a knife, they are good electrical conductors, they both react exothermically with water.
Beryllium (Be, atomic number Z=4) (below left) and magnesium (Mg, Z=12) (below right) are also fairly similar to each other in appearance and chemistry. Both are strong rigid metals and both form a thin layer of oxide in air.
(Alchemist-hp;Wikipedia and Wanut Roonguthal;Wikipedia)
The problem with Newlands' scheme is not that it was fundamentally wrong. The problem was that he compared it to an octave musical scale. The fairly recently formed Chemical Society of London thought his musical note theory was far too ridiculous to publish until the octet theory of chemical bonding was established in 1916, and its importance was finally recognized. The octet rule we know is basically a modern rewrite of Newland's rule of octaves with a few corrections. Both systems have limitations. For example, they work well only for second period elements (lithium (Z = 3) to neon (Z = 10)).
Dmitri Mendeleev, the Father of the Periodic Table
It was not long afterward (1869) that the man we know as the father of the periodic table, Dmitri Mendeleev (below), published his periodic table in an obscure Russian journal.
His arrangement provided spaces for elements that were not yet discovered and it could predict some of these unknown element's characteristics, based on their locations in the table. The only group missing was the noble gases, a group of odourless colourless almost nonreactive gases that were discovered later. And thallium, lead, mercury and platinum were in the wrong groups.
This is what his handwritten version looked like (below right), not the neat and colourful castle turret block diagram we know today:
X-ray Spectroscopy Refines Mendeleev's Table
In 1914, X-ray spectroscopy was a new and very au courant investigative tool thanks to the work of W.H. and W. L. Bragg and Maurice de Broglie. Physicist Henry Moseley took advantage of this tool to find a relationship between the X-ray wavelength of an element and its atomic number, Z. This was the first logical order imposed on the elements that is based on physics, and it also refined Ernest Rutherford's model of the atom, which was published just a few years earlier, in 1911. Rutherford discovered that the atom, rather than being a uniform sphere, consisted of an intense central positive charge concentrated in a tiny volume at the center surrounded by a more diffuse but equal negative charge. Moseley's work suggested that the central positive charge was not a single positive charge but actually up to several positive charges instead, the number of which was equal to the element's atomic number in the table. To explore in detail how Moseley's work brought the periodic table into the quantum age, see History of the Periodic Table Part 3: Spectroscopy Paves the Way For the Quantum Atom.
Mendeleev's periodic table doesn't much look like our modern version. I created a block version of his table, shown below, with Dobereiner's triads marked out as yellow squares, as well as the elements known to the ancients (squares with dark green dots). The green squares are elements, such as noble gases, unknown in Mendeleev's time but he left the green gaps to be filled in later. Approximate atomic masses are shown beneath each element's symbol.
Beyond Mendeleev's Table
Many more elements are known to us today. Our modern version of the periodic table organizes elements into blocks, shown below.
Roshan220195;wikipedia) |
Blocks s, p, d and f are derived from the orbital configurations of the electrons in the atom, which themselves derive form the quantum angular momentum numbers of the electrons. To learn about orbitals and subshells and to review them, read Atoms Part 4A: Atoms and Chemistry - Atomic Orbitals and Bonding. Orbital configuration will also be explained in detail in History of the Periodic Table Part 4: Lanthanides and Actinides - Elemental Misfits?
The s-block contains alkali earths and alkali metals. The p-block contains all the nonmetal elements with the exception of hydrogen and helium. The d-block contains transition metals. The f-block contains inner transition elements - the lanthanides and actinides.
S-block elements exhibit well-defined trends in their physical and chemical properties, which can be explained by the increasing number of valence electrons filling up the s-subshell. The valence (these are highest energy outermost electrons involved in chemical interactions) electrons in the P-block elements fill up the p subshell. Valence electrons in the d-block elements fill up the d subshell, and f-block elements have valence electrons that fill the f subshell. What sets the f-block elements apart is that after the first element in each series (for example, lanthanum, Z=57, in the lanthanide series), the energy of the outer 4f subshell falls below that of the inner 5d subshell, so electrons from cerium (Z=58) onward start to fill up the 4f subshell before any more electrons are added to the 5d subshell. This places them in the f-block even though technically they fit into the d-block (see the light and dark blank pink squares in the table at the the beginning of this article). We will explore this in greater detail in History of the Periodic Table Part 4.
An additional hypothetical g-block would consist of elements with atomic numbers higher than 117. These elements would be filling g orbitals and all would be unstable and therefore radioactive. In fact, all elements above Z = 82 (lead) are unstable and the trend is that the half-lives of elements above lead generally decrease (meaning they are increasingly unstable) as atomic number increases. No elements larger than Z = 118 (ununoctium) have been created or discovered. Ununoctium has a half-life of just 0.89 milliseconds, and only a few atoms of it have ever been created in a collider. However, researcher Walter Greiner predicts there are more elements to discover and, in fact, there may not be a highest possible element, at least theoretically.
Some elements may exist in what Glenn Seaborg, a nuclear physicist, called an island of stability: a group of elements with a neutron number (N) around 178 and an atomic number (Z) around 118 that would be unusually stable with half-lives at least minutes long and perhaps far longer, demonstrated below in a 3-dimensional map.
InvaderXan;Wikipedia |
These additional elements could be placed in an extended version of the periodic table, shown below. This is hard to see so you can find a large version of it here.
The extended periodic table would include additional blocks of elements such as super-actinides and eka -super-actinides.
In History of the Periodic Table Part 5, we will focus on the lanthanide series in the f-block elements - the rare earths. These elements have unique properties that are essential to the high-tech industry, a story that is gaining political energy. Part 4 and 5 articles continue our story of the history of the periodic table and bring it into the quantum mechanical age.
In History of the Periodic Table Part 6, we will explore the future of the periodic table further. In light of quantum mechanics, some experts believe that the periodic table is long overdue for makeover. The extended table above is a hint at what may come.
I highly recommend Dr. Eric Scerri's website. He is an expert in the history and philosophy of the periodic table, specializing in the electronic structure of atoms. He is author of several chemistry books and articles, and you will also find several interviews and articles featuring his work. It is a MUST visit for those who wish to teach about the periodic table.
Finally, I recommend a BBC series of three 1- hour documentaries called Chemistry: A Volatile History (released 2010) as a must watch for those of us fascinated by the history of the periodic table and of chemistry in general. It is not easy to find and doesn't seem to be available for purchase, but you can watch the series (complete with episode descriptions) here at brainpickings.org.
Next up: History of the Periodic Table Part 2.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.